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abstract

PURPOSE Metastatic colorectal cancers (mCRCs) assigned to the transit-amplifying (TA) CRCAssigner subtype
are more sensitive to anti–epidermal growth factor receptor (EGFR) therapy. We evaluated the association
between the intratumoral presence of TA signature (TA-high/TA-low, dubbed as TA-ness classification) and
outcomes in CRCs treated with anti-EGFR therapy.

PATIENTS AND METHODS The TA-ness classes were defined in a discovery cohort (n = 84) and independently
validated in a clinical trial (CO.20; cetuximab monotherapy arm; n = 121) and other samples using an
established NanoString-based gene expression assay. Progression-free survival (PFS), overall survival (OS), and
disease control rate (DCR) according to TA-ness classification were assessed by univariate and multivariate
analyses.

RESULTS The TA-ness was measured in 772 samples from 712 patients. Patients (treated with anti-EGFR
therapy) with TA-high tumors had significantly longer PFS (discovery hazard ratio [HR], 0.40; 95% CI, 0.25 to
0.64; P , .001; validation HR, 0.65; 95% CI, 0.45 to 0.93; P = .018), longer OS (discovery HR, 0.48; 95% CI,
0.29 to 0.78; P = .003; validation HR, 0.67; 95%CI, 0.46 to 0.98; P = .04), and higher DCR (discovery odds ratio
[OR]; 14.8; 95% CI, 4.30 to 59.54; P , .001; validation OR, 4.35; 95% CI, 2.00 to 9.09; P , .001). TA-ness
classification and its association with anti-EGFR therapy outcomes were further confirmed using publicly
available data (n = 80) frommetastatic samples (PFS P, .001) and patient-derived xenografts (P = .042). In an
exploratory analysis of 55 patients with RAS/BRAF wild-type and left-sided tumors, TA-high class was sig-
nificantly associated with longer PFS and trend toward higher response rate (PFS HR, 0.53; 95% CI, 0.28 to
1.00; P = .049; OR, 5.88; 95% CI, 0.71 to 4.55; P = .09; response rate 33% in TA-high and 7.7% in TA-low).

CONCLUSION TA-ness classification is associated with prognosis in patients with mCRC treated with anti-EGFR
therapy andmay further help understanding the value of sidedness in patients withRAS/BRAFwild-type tumors.
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INTRODUCTION

Epidermal growth factor receptor (EGFR)-targeting
antibodies cetuximab and panitumumab are available
treatment options for approximately 40% of patients
with metastatic colorectal cancer (mCRC).1 Patient
selection based on RAS and BRAF wild-type status
and sidedness has improved overall response rates
and survival outcomes. Nevertheless, 30%-60% of
eligible patients do not benefit from these expensive
drugs.2-4 As a shift from the traditional paradigm of

negative molecular selection, we previously demon-
strated that the transit-amplifying (TA) CRCAssigner
(CRCA) subtype was enriched for cetuximab-responsive
tumors,5 a finding independently validated in a clinical
study,6 in a panel of CRC xenografts5 and cell lines.5,7

However, responses were also seen in other groups,
such as the poorly differentiated stem-like subtype,5,7

albeit at a lower frequency. This suggested a scope for
refining a previously validated gene-expression–based
classifier to assess anti-EGFR therapy response in CRC.
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TA subtype tumors are characterized by gene signatures
similar to normal TA cells of the colonic crypt, that is, those
in transit between stem cells in the crypt base and dif-
ferentiated cells at the top of the crypt.5 After asymmetric
division, stem cells generate rapidly proliferating TA cells
characterized by increased EGFR expression that even-
tually differentiate into goblet cells and enterocytes.8,9 We
evaluated a hypothesis that tumors with increased TA gene
signature expression (irrespective of TA or other subtypes)
may be associated with anti-EGFR therapy outcomes. This
may capture intratumoral transcriptomic heterogeneity in
CRCs with more than one subtype signature coexisting in
the same tumor and improve assessment of prognosis and
its association with RAS/BRAF wild-type statuses and tu-
mor sidedness in patients with mCRC treated with anti-
EGFR therapy.10

PATIENTS AND METHODS

Study Population

Four independent cohorts of patients with CRC treated with
anti-EGFR therapy (n = 315) were examined: one discovery
and three validation (two clinical and one experimental)
cohorts (Fig 1). The discovery cohort included chemo-
refractory patients (n = 84) who had received anti-EGFR
therapy as a single agent or in combination with chemo-
therapy after progression while receiving irinotecan (during
or within 3 months from the end of treatment) as part of
standard treatment at the Royal Marsden Hospital (RMH;
n = 59; United Kingdom, ethics committee: 10/H0308/28;
and ClinicalTrials.gov identifier: NCT02112357) or within
the context of a case-control study in Italian institutions
(PRESSING, n = 25; ethics committee Area Vasta Nord
Ovest number 1333/173). All patients signed an informed
consent for translational research and received at least one
cycle of anti-EGFR therapy. Nineteen and 12 patients from
the RMH cohort were treated before the implementation of
KRAS testing (August 2009) and extended RAS testing
(December 2011), respectively.11,12 All patient samples

from the PRESSING study had extended RAS/BRAF wild-
type tumors.

One of the clinical validation cohorts included 121 patients
with KRAS exon 2 wild-type tumors who had received
single-agent cetuximab within the control arm of the CO.20
phase III randomized clinical trial (ClinicalTrials.gov iden-
tifier: NCT00640471).13 This correlative analysis was ap-
proved by the Joint Canadian Cancer Trial Group and
Australasian Gastrointestinal Trial Group (CCTG/AGITG)
Correlative Sciences and Tumor Biology Committee.

Two additional public gene expression datasets (n = 397;
not treated with anti-EGFR therapy) of primary CRC sam-
ples (GSE39582; n = 328) and liver mCRC lesions
(GSE73255; n = 69) were evaluated.14,15 Only samples with
known KRAS wild-type status were selected.

Nucleic Acids Extraction

Formalin-fixed paraffin-embedded (FFPE) tissues were
evaluated by a trained pathologist; areas with at least
30% of tumor content were marked on hematoxylin and
eosin slides and macrodissected in unstained slides (7- to
10-µm thickness). After deparaffinization, total RNA and
DNA were simultaneously isolated using the Ambion
RecoverAll kit (discovery) or QIAamp nucleic acid FFPE
tissue kit (validation) and quantified with NanoDrop 2000
Spectrophotometer (Thermo Fisher, Waltham, MA) accord-
ing to the manufacturer’s instructions. The DNA quantifi-
cation (validation) was performed using a PICO plate reader
and the Qubit dsDNA HS kit (ThermoFisher), with an 8-point
reference curve.

Biomarker Assessment

Thirty-eight published CRCAssigner subtype-specific
genes (CRCA-38) were assessed using the NanoString
platform (NanoString Technologies, Seattle, WA) according
to a previously validated custom CRC subtype-based gene
expression analysis assay.16 Based on the correlation co-
efficient values after Pearson correlation analysis between

CONTEXT

Key Objective
To evaluate whether the presence of the transit-amplifying (TA) subtype gene signature (dubbed as TA-ness classification)

representing the intratumoral transcriptome heterogeneity is associated with anti–epidermal growth factor receptor (EGFR)
therapy outcomes.

Knowledge Generated
The TA-ness classification is an easily detectable biomarker of intratumoral transcriptome heterogeneity, which was retro-

spectively evaluated in 712 patient samples, including those from a clinical (CO.20) trial, which showed prognostic
significance in patients treated with anti-EGFR therapy. This biomarker provides additional biologic insights for the as-
sociation between RAS/BRAF wild-type left-sided tumors (enriched for TA-high) and anti-EGFR therapy benefit.

Relevance
With further validation, TA-ness may represent a positive selection biomarker for patients with RAS/BRAF wild-type left-sided

metastatic colorectal cancer who are most likely to benefit from anti-EGFR therapy.
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five published CRCA-38 centroids (expression summary of
each gene in each subtype)16 and gene expression, each
sample was assigned either to TA-high (increased ex-
pression of TA signature genes) or TA-low (reduced ex-
pression) TA-ness classes. When gene expression profiles
were compared with the five CRCA-38 centroids, five
correlation coefficients (one for each subtype-centroid)
were calculated for each sample. The coefficients were
then ranked from highest to lowest; TA-high samples were
those with a correlation coefficient value for the TA centroid
ranking within the first three highest values; TA-low sam-
ples were those with a correlation coefficient for the TA
centroid, which is second to last or the lowest. Therefore,
the TA-ness classification represents a measure of
transcriptome-based intratumoral heterogeneity in mCRC,
based on the idea that each sample can contain more than
one subtype. This best cut-off for TA-ness classification was
established based on the highest accuracy in defining
disease control, measured as area under the curve (AUC)
of a receiver operating characteristic (ROC) curve (Ap-
pendix Fig A1).

Statistical Analysis

Progression-free survival (PFS) was the primary endpoint.
Overall survival (OS), disease control rate (DCR), and re-
sponse rate were secondary endpoints. Kaplan-Meier
survival function was used to estimate survival curves

followed by log-rank test to analyze differences in survival
time. Fisher’s exact test was used to compare categorical
variables, and Wilcoxon signed rank test with P , .05 was
used to assess the association between TA-ness classes
and percentage of tumor shrinkage (using RECIST) criteria
in a subgroup of the discovery cohort. Multivariate analyses
were performed for the discovery and the validation co-
horts, using Cox proportional hazard regression models
with 95% CIs. An ROC curve was built to evaluate the
accuracy of TA-ness signature and sidedness in defining
anti-EGFR clinical benefit. Although the statistical analysis
of discovery cohort was performed by the Institute of Cancer
Research statistician, the validation cohort was in-
dependently analyzed by CCTG/AGITG investigators blin-
ded to the biomarker cut-off analysis. Additional methods
are available in the Data Supplement.

RESULTS

Retrospective anti–EGFR-treated tumor samples from 205
patients were identified from the discovery and validation
(CO.20) cohorts after clinical review and quality control of
the tumor blocks and tumor-derived RNA (Fig 1A). Eighty-
four patients formed the discovery cohort, and 121 pa-
tients from the CO.20 study formed the primary validation
cohort (Data Supplement). These cohorts were analyzed for
TA-ness classification using our subtype-based published
CRCA gene expression assay.16 Moreover, an experiment
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FIG 1. (A) CONSORT diagram of samples included in the study cohorts. (B) Univariate and multivariate analyses for progression-free survival (PFS) and
disease control rate (DCR). Covariates included in the discovery cohort models: age, sex, type of treatment, sidedness, and mutational status. Covariates
included in the validation cohort: Eastern Cooperative Oncology Group performance status, sex, age, baseline lactate dehydrogenase level, baseline alkaline
phosphatase, baseline hemoglobin, number of disease sites, number of previous chemotherapy drug classes, prior VEGFR target therapy, and presence of
liver metastases. Covariates in the RAS/BRAF wild-type (wt) left-sided cohort: age and sex. All comparisons were performed as transit-amplifying (TA)-high
over TA-low classes. conc., concentration; EGFR, epidermal growth factor receptor; PDX, patient-derived xenograft; QC, quality control; RMH, RoyalMarsden
Hospital.
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cohort from 30 patients along with 30 patient-derived xe-
nografts (PDXs; derived from the patient tumors) that were
treated with anti-EGFR therapy or vehicle (control) were
subjected to the same CRCA gene expression assay. In
addition, publicly available gene expression microarray
data for 80 patients with mCRC (treated with anti-EGFR
therapy) was included as an additional clinical validation
cohort.17 This publicly available cohort also served to val-
idate TA-ness classification using a different platform
(microarrays; Fig 1A).

Patient characteristics for discovery and validation CO.20
cohorts are shown in the Data Supplement. With the ex-
ception of sex, there were no significant differences in
patients’ characteristics between the CO.20 subgroup in-
cluded in this analysis and the overall CO.20 clinical trial
cohort (Data Supplement).

Using conventional subtyping, 15 of 84 samples belonged
to the TA subtype in the discovery cohort. The TA subtype
showed a trend toward a longer PFS compared with the
other subtypes (hazard ratio [HR], 0.61; 95% CI, 0.34 to
1.09; P = .1; Appendix Fig A2). However, when TA-ness
classification was applied, 52 of 84 samples were classified
as TA-high. These TA-high tumors were significantly as-
sociated with PFS in both the discovery (HR, 0.40; 95% CI,
0.25 to 0.64; P , .001) and validation (HR, 0.65; 95% CI,
0.45 to 0.93; P = .018) cohorts (Figs 1B, 2A, and 2B).
Similarly, there was a significant association between TA-
high class and longer OS (discovery HR, 0.48; 95%CI, 0.29
to 0.79; P = .003; validation HR, 0.67; 95% CI, 0.46 to
0.98; P = .04; Figs 2C and 2D) and with higher DCR in both
cohorts (Fig 1B; Data Supplement). The association of
TA-ness classification with both PFS and DCR remained
significant after adjusting for multiple variables in both the
discovery and validation cohorts (Fig 1B). Conversely, after
adjusting for multiple variables, significant association of
TA-ness with OS was only borderline (or not significant with
P = .1 in the discovery cohort and P = .06 in the validation
cohort; Data Supplement); postprogression treatment in-
formation was not available.

In the discovery cohort, TA-high tumors (62%; n = 52) were
predominantly RAS/BRAF wild-type (69%; n = 36) and
were found in the left side of the colon (79%; n = 41). The
validation CO.20 cohort was completely selected for KRAS
wild-type tumors (Data Supplement).

In a subset of patients with available serial computed to-
mography scan measurements from the discovery cohort (n =
35), the depth of response was associated with the TA-ness
classification (Wilcoxon test; P, .001; Fig 3A). This result was
mirrored in the experimental cohort,18,19 in which 30 RAS/
BRAF wild-type liver metastases were classified into TA-high
(n = 16) and TA-low (n = 14) classes. The percentage of
cetuximab-induced tumor volume change in the PDX-based
mouse-propagated patient metastatic tumors was significantly
associated (P , .042) with the TA-ness signature (Fig 3B).

In the discovery cohort, the TA-ness classification was
assessed using samples from primary tumors in 76% of
patients and samples from metastatic sites in 24% of
patients. Nevertheless, the origin of diagnostic samples did
not affect the classification (Data Supplement). To further
confirm that the association was independent of the di-
agnostic sample of origin and to further validate the results,
we examined the Khambata-Ford publicly available
(microarray) dataset17 of mCRC samples from patients
treated with cetuximab. Similar to the discovery and vali-
dation cohorts, TA-high class was significantly associated
with longer PFS (HR, 0.36; 95% CI, 0.22 to 0.57; P, .001)
in the Khambata-Ford data (Fig 2E). To further confirm that
the TA-ness can be assessed in both primary tumors and
metastatic lesions, KRAS wild-type samples from two
publicly available datasets14,15 were selected; 328 primary
tumors and 69 liver metastases were classified into TA-high
and TA-low. Similar distribution of the two classes was
demonstrated (Fig 3C).

Beyond RAS/BRAF mutational status, sidedness is a rec-
ognized selection factor for anti-EGFR therapy benefit:
patients with left-sided tumors benefit more than patients
with right-sided tumors.4 However, the biology behind this
association remains unclear. First, we further confirmed
significant association (P , .001) between TA-ness clas-
sification and sidedness in KRAS wild-type primary tumors
(GSE39582; Fig 3D). Then, we sought to discover whether
the TA-ness classification could further refine the selection
of patients in addition to RAS/BRAF status and sidedness.
Within discovery and validation cohorts (n = 205), high-
sensitivity next-generation sequencing RAS/BRAF muta-
tional analysis was available for 118 patients: 71 were
classified as RAS/BRAF wild-type, of which 53 were
assigned to TA-high (75%) class. The accuracy of the
classification (measured as AUC) appeared higher than the
accuracy of the sidedness in defining DCR (AUC, 0.70 v
0.59; Data Supplement), which warrants additional
validation.

Among 55 patients with RAS/BRAF wild-type and left-sided
tumors (the population that nowadays would meet the
clinical selection criteria for anti-EGFR therapy), the me-
dian PFS of TA-high left-sided tumors was significantly
longer than that of TA-low left-sided tumors (5.62 v 2
months; HR, 0.53; 95% CI, 0.28 to 1.00; P = .049; Fig 2F).
The response rate is 33% in TA-high and 7.7% in TA-low
(Data Supplement).

DISCUSSION

In this study, we explored, for the first time (to our
knowledge), a proof-of-concept intratumoral heterogeneity-
based transcriptome biomarker of prognosis and potential
response in patients treated with anti-EGFR agents along
with the clinically established criteria of RAS/BRAF wild-
type status and tumor sidedness. Two different classes can
be identified in patient samples based on the TA-ness
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(intratumoral transcriptome) classification: TA-high and
TA-low. This classification has the advantage of providing
a qualitative assessment in all the samples, including the
non-TA subtypes, overcoming the limitations posed by

intratumoral heterogeneity when using the conventional
molecular subtyping classification as a potential tool to
assess benefit from anti-EGFR therapy. TA-high tumors
were significantly and primarily associated with prognosis

FIG 2. Kaplan-Meier survival curves of patients with transit-amplifying (TA)-high versus TA-low tumors treated with anti–epidermal growth factor receptor
(EGFR) therapy. (A) Progression-free survival (PFS) from discovery cohort (n = 84). (B) PFS from validation CO.20. cohort (n = 121). (C) Overall survival
(OS) from discovery cohort (n = 84). (D) OS from validation CO.20. cohort (n = 121). (E) PFS from publicly available Khambata-Ford et al17 data (n = 80). (F)
PFS from extended RAS/BRAF left-sided tumors (n = 55). HR, hazard ratio. P values are from log-rank test.
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epidermal growth factor receptor [EGFR] drug) according to RECIST criteria and TA-ness classification. Mutational status and sidedness are also shown.
P values were from Wilcoxon test. (B) A waterfall plot showing change in tumor (percent) volume in anti-EGFR–treated mouse-propagated patient tumor
samples (n = 30) compared with matched control treated (baseline; n = 30) mouse-propagated patient tumors. The bars in the graph show TA-ness
classification for the matched patient metastatic liver samples (n = 30), and the bars below the graph show the same classification for matched mouse-
propagated patient tumors (treated v control). P values were from theWilcoxon test. (C) A bar plot showing the proportion of TA-ness classes in KRASwild-
type primary colorectal cancer tumors and liver metastases. (D) Heat map showing the association between TA-ness classes and sidedness in KRASwild-
type primary tumors (GSE39582). PDX, patient-derived xenograft.
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(and potentially clinical benefit) in patients treated with
anti-EGFR–based therapy in our discovery cohort; this
was validated in a KRAS exon 2 wild-type trial cohort of
cetuximab-only–treated patients,13 which has the advan-
tage of properly assessing prognostic value in a homoge-
neously treated population and in the absence of the
confounding effect of chemotherapy. The significant
prognostic role of TA-high was retained in the RAS/BRAF
wild-type and left-sided subgroup. Moreover, TA-low as-
signment was enriched for RAS/BRAF-mutant tumors,
providing a potential alternative method to estimate prog-
nosis and may be a treatment benefit from anti-EGFR
therapy when the mutational status is missing. This sig-
nature and its association with anti-EGFR treatment out-
comes were also confirmed in the publicly available
samples from patients with mCRC17 and the preclinical
PDX models treated with cetuximab.18,19 Finally, the TA-
ness classification retained prognostic significance when
assessed in either archival primary tumors or metastatic
samples in multiple cohorts. This is highly clinically rele-
vant, because it means that the classification can be
assessed in metastatic lesions when the primary tumor
sample is not available or of poor quality; however, intra-
patient concordance was not assessed; therefore, addi-
tional validation is required.

Several studies have now evaluated the association be-
tween single genes or microRNAs (EREG/AREG, HER2,
HER3, EPHA2, or mir-31-3p) and responses to anti-EGFR
therapy.20 In contrast, we evaluated a refined form of our
previously published gene expression signature (with
multiple genes) to identify biologically different CRC sub-
types with distinct cellular phenotypes.5,16 The subtypes
summarize a complex network of pathways potentially
associated with therapeutic responses, simplifying multiple
levels of information derived from heterogeneous samples.
Hence, the deployment of subtypes and their signatures,
instead of single genes, has the advantage of reducing
the dimension of complexity without losing biologic

information. Although the CRCA and Consensus Molecular
Subtype (CMS) classifications are highly concordant,16,21

CMS classification was not assessed here because it is
technically challenging to dichotomize samples into two
groups based on the current CMS classifier (with multiple
centroids).

This study has some limitations. First, the discovery cohort
was from two different sources. However, the outcomes
were evaluated together as a merged cohort given that
these were all patients treated with anti-EGFR therapy
within standard practice. Second, there was only a small
number of RAS/BRAF wild-type patient samples. The
identification of such patients in the context of clinical trials
is challenging; in fact, the negative predictive value of RAS/
BRAF mutations was retrospectively demonstrated in
multiple clinical trials, and to our knowledge, none of them
was designed with an up-front prospective inclusion of
extended RAS/BRAF wild-type tumors. Last, this was
a proof-of-concept study and was retrospectively designed
on preexisting tissue collections in the absence of a control
group, limiting the assessment of a TA-ness biomarker
as prognostic rather than predictive. In current clinical
practice, anti-EGFR therapy is more frequently used in the
first-line rather than the chemorefractory setting. Hence,
the assessment of the TA-ness in more contemporary first-
line trials, including a control arm and with balanced
mutational status between arms, is warranted in the future.

In conclusion, we demonstrated that the detection of the
TA-ness classification in primary CRC or mCRC samples
shows prognostic significance in patients treated with anti-
EGFR therapy and provides an additional biologic expla-
nation for left-sided versus right-sided tumors, which is
currently used for the differential anti-EGFR therapy benefit
in patients.4 Whether the TA-ness classification can be
used as a biomarker to improve patient selection for anti-
EGFR therapy benefit in mCRC warrants additional vali-
dations in the future.
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FIG A1. Receiver operating characteristic (ROC) curve to determine
the best cut-off to define disease control rate in the discovery cohort.
1° represents samples classified into transit-amplifying (TA) tumor
with highest (rank) correlation with CRCAssigner (CRCA)-38 cen-
troids. Similarly, 2° to 5° represents samples classified into TA
between second highest to lowest ranks out of five CRCA-38
subtypes. Four different combinations of the ranks (represented in
different colors) were tested for disease control rate using ROC. The
best combination was that with two groups: 1° to 3° versus 4° and
5°. AUC, area under the curve.
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