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Cancers are characterized by extensive interindividual and 
intratumor heterogeneity down to the single-cell level1. This 
fuels clonal evolution and treatment resistance2, the leading 

cause of death for individuals with cancer. The mechanisms underly-
ing such resistance are still largely unknown, especially for standard 
chemotherapeutic and immunotherapeutic regimens. Increasingly 
detailed analyses of cancer genomes before and after treatment 
have so far failed to identify genetic causes that could explain the 
ensuing refractoriness to therapy. Recently, epigenetic changes have 
emerged as key contributors of drug resistance in cancer3–8, suggest-
ing that only a comprehensive assessment of the genetic changes of 
the cancer genome, including somatic mutations and copy number 
changes, alongside a detailed description of the concomitant chro-
matin remodeling events that ensue after treatment could provide 
the insights required to tackle this pressing unmet clinical need.

As for single-cell epigenetics, the recent introduction of trans-
posases such as Tn5, which allow for the fragmenting and sequenc-
ing of native accessible chromatin in bulk (ATAC-seq9) as well as at 
the single-cell level (scATAC-seq10), is providing key insights into 
the cellular status of open chromatin. However, the epigenetic mod-
ifications of large portions of the genome that have essential roles in 

cellular physiology are excluded from this analysis. For instance, to 
our knowledge, there are no single-cell methods able to probe com-
pacted chromatin, that is, heterochromatin, which encompasses up 
to half of the entire genome11 and harbors and regulates a large array 
of transposable elements and non-coding RNAs (ncRNAs)11–13. 
Heterochromatin is assembled and maintained through H3K9me3 
(refs. 12,14), and its accurate regulation is essential for cells, for exam-
ple, contributing toward the definition of cell identity12,13 and the 
maintenance of genomic integrity15.

While single-cell transcriptomic analysis has fostered 
ground-breaking insights into the biology of healthy and diseased 
tissues, including cancer16,17, to our knowledge, a tool that compre-
hensively audits at the single-cell level both the genomic and the 
epigenetic landscape has not been reported.

Results
Tn5 is able to tagment compacted chromatin featuring 
H3K9me3. We first determined whether Tn5 is able to tag-
ment compacted chromatin if properly redirected. To this end, 
we exploited a transposase-assisted chromatin multiplex immu-
noprecipitation (TAM-ChIP) approach, which combines the 
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antibody-mediated targeting of chromatin immunoprecipitation 
with the ability of Tn5 to tagment DNA, leading to chromatin 
fragmentation and barcoding of the chromatin surrounding the 
antibody binding site (Extended Data Fig. 1a). We choose a pri-
mary antibody that recognizes the histone mark H3K9me3 (or 
H3K4me3 used as a control), in line with a recent report18, that 
was then bound by a secondary antibody conjugated to Tn5. 
H3K4me3 TAM-ChIP–seq profiles mirrored the correspond-
ing H3K4me3 chromatin immunoprecipitation sequencing 
(ChIP–seq) profiles. Instead, when a Tn5–secondary antibody 
complex that recognizes H3K9me3-specific primary antibody 
was used, Tn5 tagmented H3K9me3-enriched compacted chro-
matin regions (Extended Data Fig. 1b), which was confirmed by 
real-time quantitative PCR (RT–qPCR) (Extended Data Fig. 1c).

Together, these experiments demonstrate that Tn5, if properly 
redirected, is able to sever and tag H3K9me3-compacted chromatin.

Hybrid CD HP-1α–Tn5 targets H3K9me3 chromatin regions. 
TAM-ChIP towards H3K9me3 was only partially effective in guid-
ing Tn5 transposase toward closed chromatin. Additionally, this 
approach relies on immunoprecipitation, which poses techni-
cal challenges. We hence reasoned that the most straightforward 
approach to target compacted chromatin would entail the modifi-
cation of the natural tropism of Tn5. To this end, we extensively 
reviewed proteins and domains targeting H3K9me3. We then 
selected HP-1α, one of the hallmark proteins involved in het-
erochromatin assembly and maintenance that specifically binds 
H3K9me3 through its CD19–21.

We generated a hybrid protein whereby the HP-1α CD was 
cloned alongside Tn5 (Extended Data Fig. 2a). To link the CD with 
Tn5 transposase, we took advantage of the natural linker that con-
nects the CD and the chromoshadow domain of HP-1α, which we 
extended with two artificial linkers of different length (TnH 1–TnH 
4; Extended Data Fig. 2a). All four hybrid constructs were as effi-
cient as the native Tn5 (either the commercial Nextera enzyme or 
in-house produced enzyme (hereafter, Tn5)) to fragment and insert 
oligos into genomic DNA (gDNA; Extended Data Fig. 2b).

We then determined whether TnH 1–TnH 4 were able to tar-
get chromatin harboring H3K9me3 histone modifications by tag-
menting native chromatin on permeabilized nuclei (Extended Data 
Fig. 2c). Unlike Nextera and Tn5 enzymes, hybrid Tn5 constructs 
indeed cut and inserted oligos in regions enriched for H3K9me3 
while retaining affinity toward accessible sequences (Fig. 1a,b and 
Extended Data Fig. 2d,e). We identified the construct TnH 3 (here-
after referred to as TnH) as the most efficient (Fig. 1b and Extended 
Data Fig. 2d,e).

We next reasoned that combining Tn5 and TnH in a single 
experiment could provide a comprehensive perspective of both 
accessible and compacted chromatin (Fig. 1c). We thus loaded each 
of the two transposases with a set of specific barcoded oligos to dis-
criminate Tn5 from TnH tagmentation products (Fig. 1c). We then 
tested the effect of varying the Tn5-to-TnH ratio (Extended Data 
Fig. 3a) or adding the two enzymes sequentially (Extended Data Fig. 
3b) on the transposition reaction. The sequential use of native Tn5 
followed by TnH provided the most comprehensive mapping of the 
two chromatin profiles.

Together, these results demonstrate that a sequential combination 
of Tn5 and TnH is able to differentiate accessible versus compacted 
chromatin, thus defining the whole-genome epigenetic distribution 
of euchromatin and heterochromatin. We call this method GET-seq 
(genome and epigenome by transposases sequencing).

GET-seq at the single-cell level (scGET-seq). We then attempted 
to implement this method to single-cell analysis. To obtain 
droplet-based scGET-seq, we modified the Chromium Single Cell 
ATAC v1 protocol (10x Genomics) and replaced the provided ATAC 

transposition enzyme (10x Tn5, 10x Genomics) with Tn5 and TnH 
in appropriate enzyme proportions.

We first assessed the distribution of reads assigned to unique 
cell barcodes by using 10x Tn5, TnH, Tn5 or a combination of 
TnH and Tn5 (scGET-seq) in Caki-1 cells and found that the 
four profiles were overlapping (Extended Data Fig. 4a). We next 
explored the portion of the genome that was captured by each 
transposase. TnH had the higher mean distribution of cover-
age per cell with a smaller standard deviation than either Tn5 
or 10x Tn5 (Extended Data Fig. 4b), suggesting that, even at the 
single-cell level, TnH captures genome areas that are not targeted 
by conventional transposases. Indeed, when single-cell Tn5 and 
TnH data were each combined in pseudobulks and compared to 
the ChIP–seq data obtained in the same cells using H3K9me3 and 
H3K4me3 antibodies, TnH was able to target regions positive for 
H3K9me3 as well as H3K4me3 (Extended Data Fig. 4d), in line 
with the bulk TnH results (Fig. 1a).

We then determined whether scGET-seq was able to capture cell 
identity. To this end, we sequenced a mixture of HeLa (20%) and 
Caki-1 (80%) cancer cell lines, which originate from different tis-
sues (cervix and kidney, respectively). Cells were clearly separated 
in two clusters sized with the expected proportions (Fig. 2a).

To further confirm the identity of the clusters, we used avail-
able bulk ATAC-seq data for both cell lines and generated a score 
for each cell line. The respective scores clearly distinguished each 
cell line cluster (Fig. 2a), in accordance with standard scATAC-seq 
results (Fig. 2b).

Together, these data confirm that GET-seq can be applied to 
droplet-based single-cell approaches and is able to easily differenti-
ate cells derived from different genetic backgrounds.

Genomic copy number variants (CNVs) at the single-cell level. 
The definition of genomic CNVs using scATAC-seq remains impre-
cise because only accessible chromatin regions are surveyed by 
this approach, and the remaining genomic sequences can only be 
imputed from adjacent regions22.

As TnH also targets H3K9me3-enriched chromatin regions, 
we tested whether it could also be harnessed to define CNVs. 
Whole-genome sequencing (WGS) revealed several CNVs in 
both cell lines (fraction of genome altered, Caki-1 = 0.475 and 
HeLa = 0.508). The correlation between the genomic profiles 
obtained with WGS and the average pseudobulk profile obtained 
from single-cell data was much higher for the TnH signal than for 
the 10x Tn5 signal at various resolutions (Fig. 2c and Extended Data 
Fig. 5).

A closer inspection of the segmentation profiles at the single-cell 
level revealed that scATAC-seq is able to define CNVs at a coarse 
resolution (10 Mb), as previously determined22. Even at this reso-
lution, scGET-seq showed a much higher consistency for both cell 
lines than 10x Tn5 (Extended Data Fig. 5c). After increasing the res-
olution up to 500 kb, scGET-seq remained reliable while the ability 
of scATAC-seq to identify CNVs degraded, and large swaths of the 
genome were excluded from the analysis (Extended Data Fig. 5a,b). 
In fact, the signal emerging from scATAC-seq correlated closely 
with the location of regulatory elements throughout the genome, 
unlike scGET-seq (Fig. 2d).

We tested the ability of scGET and 10x to call CNV events using 
a machine learning approach. To this end, we called CNVs from 
bulk WGS data of Caki-1 and HeLa cells. We then split scGET-seq 
and scATAC-seq genomic bins into training and test sets (propor-
tion 70:30) and trained a logistic regression classifier and a sup-
port vector machine with linear kernel (SVM). We calculated their 
accuracy and F1 scores on the test set. scGET-seq performed better 
than scATAC-seq regardless of the classifier and the resolution, with 
the performance depending on the number of cells included in the 
analysis (Fig. 2e).
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Together, these data show the feasibility of single-cell profiling 
by GET-seq, which allows for a more precise description of genomic 
features than scATAC-seq.

scGET-seq identifies clonality in human-derived organoids. To 
ascertain the ability of GET-seq to define clonality, we decided to 
rely on a more physiological experimental setting than cell lines, 
human-derived organoids (PDOs). We thus used a tumor–normal 
matched design to generate whole-exome data derived from two 
hepatic metastases of primary colorectal tumors. The analysis of 
somatic single-nucleotide variants (SNVs) and allele-specific copy 
numbers showed high levels of aneuploidy for both samples (CRC6, 
triploid; CRC17, tetraploid). From the analysis of allele frequency 

spectra and cancer cell fractions, we found no evidence of ongoing 
subclonal expansions, concluding that CRC6 and CRC17 are mono-
clonal, a common characteristic of late-stage colorectal cancer23,24 
(Extended Data Fig. 6a). From these samples, we generated PDOs 
(Extended Data Fig. 6b), which we then profiled with scGET-seq. 
The CNV analysis confirmed the existence of two main cellular pop-
ulations with defining genomic features, closely mimicking the two 
CRC6 and CRC17 cancer populations (Fig. 3a and Extended Data 
Fig. 6c). To provide quantitative support to this observation, we also 
calculated the posterior marginal probability distribution of the num-
ber of observable clones. This analysis confirmed that scGET-seq 
could correctly identify two clusters, corresponding to CRC6 and 
CRC17. Notably, only a minority of the cells assessed were misclassi-
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fied (Supplementary Table 1). A similar analysis on Tn5-derived reads 
showed a tendency for overclustering and cell misclassification (Fig. 
3b and Supplementary Table 1). We finally explored the accuracy of 
variant calling (that is, presence/absence of a variant) by comparing 
genotyped clones with known variants profiled in the bulk samples. 
We found that the dependency of precision and sensitivity at different 
depth thresholds were in line with previous observations25, although 
values were slightly smaller and sample dependent (Fig. 3c).

Together, these results suggest that scGET-seq can be success-
fully used to concomitantly obtain detailed information on the 
single-cell epigenetic landscape as well on the underlying genomic 
structure.

Genomic and epigenetic landscape of resistant cancer clones. To 
exploit the ability of scGET-seq to capture the genomic and epigen-
etic landscape of single cells, we used PDX models of colon carci-
noma where we have shown that resistance to therapy may arise 

from the selection of clones endowed with specific genetic lesions 
along with features of plasticity that are not driven by genomic 
modifications but most likely by chromatin reshaping26,27. We 
therefore followed cancer evolution in one PDX model throughout 
several weeks of treatment with the clinically approved epidermal 
growth factor receptor (EGFR) antibody cetuximab (Extended Data 
Fig. 7a). Analysis of genomic segmentation by scGET-seq revealed 
two major clones in the absence of treatment (Fig. 3d and Extended 
Data Fig. 7b). Conversely, cells were separated into six different 
clones when assessing the pretreatment epigenetic landscape (Fig. 
3e). When the impact of treatment was assayed, clone A was pre-
dominant, while clone B was present at very low frequency (Fig. 3d). 
By contrast, the epigenetic landscape of cetuximab-treated PDX 
samples was more heterogenous, with epigenetic subclones embed-
ded within genetic clones (Fig. 3e).

We next sought to identify processes that might provide bio-
logical insights into epigenetic mechanisms of resistance to EGFR 
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blockade. To this end, we performed functional enrichment analy-
sis using the genes associated with the regions that were differen-
tially affected in the various clones (Supplementary Table 2). In the 
epigenetic clones most associated with resistance, there was a sig-
nificant enrichment of pathways linked to refractoriness to EGFR 
inhibitors, including the phospholipase C pathway28, transform-
ing growth factor-β (TGF-β) signaling29 and the WNT pathway30 
(Extended Data Fig. 7c). These results are in line with our previous 
observations that cancer cells exposed to targeted therapies do show 
resistance patterns related to genomic plasticity phenotypes, most 
likely driven by chromatin remodeling phenomena26,27.

As scGET-seq includes sequences for portions of the genome 
that are eluded by conventional ATAC-seq, we next sought to deter-
mine whether we could also define SNVs within single cells. Not all 
exome SNVs were captured by scGET-seq; nonetheless, there was 
a highly significant correlation between the mutations identified 
by bulk exome sequencing conducted on the primary tumor and 
the scGET-seq results (Fig. 3f). Notably, by virtue of the single-cell 
analysis, it was possible to ascribe the mutations to specific clones.

scGET-seq was also able to identify mutations not present in 
the initial bulk exome sequencing in the starting sample and muta-
tions that affected established cancer genes (tier 1, COSMIC Cancer 
Gene Census, version 92 (ref. 31); Supplementary Table 3), includ-
ing CDKN1B, KDM5A, CDH11, SRSF2, MSH2, SMO and NCOA2 
(Fig. 3g) (the enrichment for COSMIC mutations was significant 
for variants profiled at high depth, that is, higher than 15; odds 
ratio = 1.55; P = 3.57 × 10−3, Fisher’s exact test). At this stage, it 
remains to be ascertained whether the mutations that were found 
by single-cell analysis but not by bulk sequencing were developed 
de novo by the PDX or were already present in the original popula-
tion at frequencies too low to be detected by the limited coverage of 
exome sequencing.

Together, these results suggest that scGET-seq could be used to 
comprehensively assess the tumor genome (including both CNVs 

and SNVs) and the epigenome, illuminating paths of cancer evolu-
tion, clonality and drug resistance.

scGET-seq captures chromatin status at the single-cell level. We 
next determined whether scGET-seq might capture the dynamics 
between accessible and compacted chromatin at the single-cell level. 
We have recently demonstrated that ablation of the histone demeth-
ylase Kdm5c hampers H3K9me3 deposition, impairing heterochro-
matin assembly and maintenance in NIH-3T3 cells32. We performed 
scGET-seq in cells before and after Kdm5c knockdown. We identified 
two neatly distinguished cell groups, including short hairpin scramble 
(shScr) and shKdm5c cells, respectively (Fig. 4a). Seeking to find an 
explanation for this pattern, we discovered that this distinction was 
driven by the total number of reads per cell (Fig. 4b). We surmised 
that this pattern might be driven by the cell cycle status, namely, high 
coverage associated with cells in the S and G2/M cycle phases during 
or after DNA replication and low coverage linked to cells in the G1 
cycle phase before the replication of DNA. To test our hypothesis, we 
applied a strategy derived from ref. 10 where we analyzed the distribu-
tion of Repli-seq33–35 signal over differentially enriched DHS regions 
between high- and low-coverage cells. We found that high-coverage 
cells are characterized by a higher, less variable fraction of early repli-
cating regions (Extended Data Fig. 8a) in contrast to the highly vari-
able values characterizing the low-coverage cells. This pattern suggests 
that cells with high coverage are indeed in mitosis, as confirmed by 
the scores calculated on lamin B1-associated domain data33 (Extended 
Data Fig. 8b).

To decode the relationship between accessible and compacted 
chromatin as captured by scGET-seq, we focused our analysis on 
major repeats, regions of the genome that undergo compaction dur-
ing the cell cycle through the acquisition of H3K9me3 residues. As 
Kdm5c acts and heterochromatin assembly occurs during middle/
late S phase, we focused on the G1/S phase of the cell cycle32,36. The 
signal emerging from Tn5 was weaker in G1/S cells where Kdm5c 
expression was not knocked down (Fig. 4a,d, black arrow, compared 
to TnH in Fig. 4c, red arrow), likely because these cells present a 
normal assembly of H3K9me3 and heterochromatin, and therefore 
Tn5 would be unable to tag compacted DNA. Conversely, the signal 
from TnH showed a more even distribution in G1/S cells, irrespec-
tive of Kdm5c status, as TnH targets both accessible and compacted 
chromatin (Fig. 4c).

We tested whether our observation was statistically significant 
fitting a linear model that considers the enrichment over TnH and 
Tn5 as an interaction term when looking for groupwise specific 
markers. We found that TnH enrichment was significantly higher 
than Tn5 in groups 3 and 6 (Extended Data Fig. 8c,d), where indeed 
shScr cells are present at a higher percentage, suggesting that TnH is 
able to selectively capture regions of the genome, such as chromatin 
decorated with H3K9me3, which Tn5 is unable to reach.

Together, these data suggest that GET-seq pinpoints quantitative 
differences between the two enzymes arising from the local chro-
matin status.

scGET-seq defines cell identity and developmental paths. The 
modulation of H3K9 methylation and chromatin compaction 
are pivotal mechanisms underlying organismal development and 
cellular reprogramming. We thus explored the potential role of 
scGET-seq in illuminating these processes. To this end, we explored 
the single-cell profiles of cultured fibroblasts (FIBs) undergoing 
reprogramming into induced pluripotent stem cells (iPSCs) that 
were obtained from two unrelated healthy individuals and of iPSCs 
undergoing differentiation into neural progenitor cells (NPCs). In 
parallel, we performed single-cell RNA sequencing (scRNA-seq) 
analysis on cells from the same samples.

Low-dimensional representation of single-cell data from 
scGET-seq and scRNA-seq separated FIBs, iPSCs and NPCs into 
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three distinct populations (Fig. 5a,b). Notably, UMAP representa-
tions of both scGET-seq and scRNA-seq data showed that iPSCs 
and NPCs were in close proximity, while FIBs were isolated from 
the other two populations, with the exception of a small subset of 
FIBs and to a lesser extent NPCs clustering alongside iPSCs exclu-
sively in the scGET-seq data (Fig. 5a, black arrow).

We next explored the genomic regions more closely defining 
each population. Notably, the GET-seq sequences most significantly 
enriched in each cell type were in proximity of genes that are crucial 
for the biology of each population, such as COL5A2 for FIBs, L1TD1 
for iPSCs37 and PRTG for NPCs38 (Fig. 5c and Supplementary Table 
4), with concomitant expression in the corresponding populations.

We next sought to determine whether the epigenetic landscapes 
depicted by scGET-seq could be exploited to capture cell fate prob-
abilities. Indeed, it has been recently proposed that cell fate choices 
are driven by a continuum of epigenetic choices more than a series of 
discrete bifurcations alongside developmental paths39. To this end, 
a tool has been recently devised, Palantir39, that is able to capture 
these dynamics from scRNA-seq data. When we applied Palantir to 
the GET-seq dataset, we found three main fate branches (Extended 
Data Fig. 9a) defining a group of cells endowed with an intense dif-
ferentiation potential (Fig. 5d), which included iPSCs and the sub-
set of FIBs and NPCs clustering alongside iPSCs (Fig. 5a).

Intrigued by these results, we then explored the regions defining 
these cellular populations endowed with the highest differentiation 
potential (Fig. 5e). We found that these regions resided, for the most 
part, in pericentromeric regions (Supplementary Table 5), in line 

with recent reports supporting a crucial role for these genomic areas 
as drivers of pluripotency40–43. We hence used the genes associated 
with these regions to generate a differentiation signature, which we 
then applied to scRNA-seq data. This signature highlighted a subset 
of NPCs as well as FIBs sharing similar features in the scRNA-seq 
data (Fig. 5f, red arrows).

Together, these results suggest that GET-seq is able to capture 
the epigenetic diversity arising during developmental processes 
and identify key factors engaged in the process. Additionally, this 
approach may uncover epigenetic events arising before the appear-
ance of the concomitant transcriptomic events.

Chromatin Velocity to define epigenetic vectors. Prompted by the 
quantitative properties of scGET-seq highlighted in the shKdm5c 
experiment, we sought to investigate developmental dynamics in 
terms of differential unfolding of chromatin. RNA velocity is a tool 
recently introduced that uses scRNA-seq data to capture not only 
the overall developmental direction of each cell but also its kinetics, 
that is, the differential displacement by which various cells travel 
through states44. We hence explored whether it is feasible to obtain 
single-cell trajectories using scGET-seq data. Instead of using the 
ratio between unspliced and spliced mRNA, as in RNA velocity, 
we exploited the ratio between Tn5 and TnH signals at any given 
location under the assumption that an increase in this value points 
to a dynamic process leading to more relaxed chromatin, while the 
opposite is indicative of chromatin compaction (Extended Data 
Fig. 9b). We found that this approach, which we named Chromatin 
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Velocity, is indeed able to capture not only the overall direction but 
also the velocity of chromatin remodeling (Fig. 6a), with a pattern 
similar to RNA velocity (Fig. 6b). Of note, the overall pattern of 
chromatin velocity recapitulates Palantir results in highlighting a 
group of cells, including iPSCs, NPCs and FIBs, from which most 
differentiation processes appeared to arise (Figs. 5d and 6a). Also, 
RNA velocity revealed that the subset of FIBs enriched for the dif-
ferentiation signature represented the origin from which the FIB 
population arose (Fig. 6b).

Curious to find the pathways engaged in the differentiation pro-
cess, we analyzed the results of the dynamical model and identified 
the 1,703 DHS regions with highest likelihood of being subjected 
to remodeling. Functional analysis on the genes associated to these 
regions revealed a strong enrichment for categories related to neu-
ral morphogenesis, including axonogenesis and various pathways 
linked to neural development and morphogenesis, suggesting that 
our approach is indeed able to grasp biological processes relevant to 
the model (Fig. 6c and Supplementary Table 6).

As transcription factors (TF) are the key drivers of differ-
entiation, we designed a global TF dynamic score (Fig. 6d and 
Methods), a cell-by-TF value that is informative of the role of 
specific TFs in specific cell trajectories. We applied a projection 
to latent structures regression analysis (PLS)45 fitting the cell TF 
scores to cell clusters (Extended Data Fig. 9c and Supplementary 
Table 7) that clearly separated FIBs on one side and NPCs and 
iPSCs on the other. Several TFs already implicated in FIB devel-
opment and maintenance were included, such as FOSL2 (ref. 46), 
TP63 (ref. 47) and NFE2L2 (ref. 48) (Fig. 6e). Conversely, NPCs 

and iPSCs were strongly enriched for TFs that are key for neural 
differentiation, namely NHLH1 (ref. 49) and MECP2, mutations in 
which lead to mental retardation50. MECP2, MBD2 and ZBTB33 
(KAISO) exert redundant activities in neuronal development51.. 
Notably, MECP2 enhances the separation of heterochromatin and 
euchromatin through its condensate partitioning properties52. 
Two TFs were pivotal in these cells, ONECUT1 and LHX3. It has 
been recently shown that ONECUT1 profoundly remodels chro-
matin accessibility, thus inducing a neuron-like morphology and 
the expression of neural genes53. ONECUT1 and LHX3, alongside 
ISLET1, tightly cooperate to dictate the transition from nascent 
toward maturing embryonic stem cell (ESC)-derived neurons 
through the engagement of stage-specific enhancers54.

As PLS1 seems to be associated with the development stage of 
neural cells, we assessed whether a similar pattern is recapitulated 
in vivo. To this end, we analyzed expression data of developing 
human brain obtained from ref. 55, focusing on the early time points 
(4–20 weeks after conception). With the exception of DUX4, which 
was not profiled in that dataset, we found that TFs with the most 
negative loading on PLS1 have a single peak of expression in the 
early stages of brain development (Fig. 6f) and are abruptly down-
regulated afterwards. Similarly, TFs with the most negative load-
ing on PLS2 include many entries that are also active in the very 
early stages of brain development (Extended Data Fig. 9d), such as 
MBD2, ONECUT1 and LHX3.

Together, we posit that Chromatin Velocity captures epigenetic 
transitions underlying crucial biological processes and illuminates 
the hidden TF networks and wiring driving these dynamic fluxes.
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Discussion
In this study, we propose a new single-cell approach, scGET-seq, 
based on the engineering of a Tn5 transposase targeting H3K9me3, 
thus providing a comprehensive epigenetic assessment of hetero-
chromatin. Additionally, the sequencing of a much larger portion of 
the genome allows for the accurate and high-resolution identifica-
tion of CNVs as well as the detection of SNVs at the single-cell level. 
We have also harnessed epigenetic data to develop a computational 
approach, Chromatin Velocity, that defines vectors of cellular fate 
and predicts future cell states based on the ratio between open and 
closed chromatin.

Several human diseases are the result of disrupted epigenetic 
processes, including cancer where the all-important relationship 
between genetic-driven events versus plasticity remains unclear. 
Indeed, the study of cancer evolution has relied on the definition of 
genetic lesions conferring selective advantage, such as the acquisi-
tion of somatic mutations or copy number aberrations. Yet, grow-
ing evidence points to epigenetic traits as crucially important in 
several cancer-related phenotypes, for instance the acquisition of 
drug resistance3–8. We envision that the engineering of additional 
hybrid transposases, including domains targeting other portions of 
the genome, could extend and integrate the information provided 
by TnH.

Recent enzyme-tethering strategies have been proposed for 
chromatin profiling, such as TAM-ChIP and most relevantly 
CUT&Tag56. Indeed, both GET-seq and CUT&Tag are applied on 
permeabilized live cells, exploit a streamlined Tn5-based library 
preparation and are suitable for low cell numbers and single cells57. 
However, CUT&Tag is based on antibody-guided tagmentation 
before chromatin tagmentation, while GET-seq directly targets 
chromatin through Tn5 tropism modification, therefore offering 
a more expedited procedure and removing limitations due to spe-
cific antibody availability and validation. Finally, to our knowledge, 
GET-seq is unique in its possibility of multiplexing analysis of dif-
ferent targets in the same reaction through specific barcodes in 
MEDS oligonucleotides.

RNA velocity adds the vector of time and direction to scRNA-seq 
one-dimensional data44. We propose here Chromatin Velocity, 
which provides multidimensional information at the epigenetic 
level. Bulk analysis has revealed that in development, cells undergo 
epigenetic changes, such as modulation in the opening and closing 
of chromatin, which precedes and prepares gene expression modi-
fications58–63. Therefore, it stands to reason that RNA velocity and 
Chromatin Velocity are going to capture non-superimposable bio-
logical processes.

Retracing the specific engagement of TFs from scRNA-seq 
experiments is challenging64. Leveraging the detailed description 
of epigenome analysis provides more robust data and reduces vari-
ability, allowing for the genome-wide identification of TFs and the 
epigenetic dynamics of processes such as development.

In summary, we propose a new method, scGET-seq, that cap-
tures genomic and chromatin landscapes and trajectories as well 
as key players, which could provide important insights in fields 
as diverse as development, regenerative medicine and the study of 
human diseases, including cancer.
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Methods
Cell culture. All established cell lines were purchased from American Type Culture 
Collection (ATCC), except for the HEK293T cell line, which was a kind gift from 
L. Naldini (San Raffaele Telethon Institute for Gene Therapy). Cells were cultured 
in DMEM (NIH-3T3, HeLa and HEK293T) or RPMI (Caki-1) supplemented 
with 10% fetal bovine serum (FA30WS1810500, Carlo Erba for HEK293T cells, 
and 10270-106, Gibco for all the other cell lines) and 1% penicillin-streptomycin 
(ECB3001D, Euroclone).

TAM-ChIP. TAM-ChIP (Active Motif) was performed following manufacturer’s 
instructions starting with 10,000,000 Caki-1 cells crosslinked with 38% 
formaldehyde; fixation was stopped with 0.125 M glycine. Sonication was then 
performed using a Covaris E220 with the following parameters: total time 6 min, 
175 peak incident power, 200 cycles per burst. Sonicated chromatin (8 μg) was used 
as input for each experimental condition. The following antibodies were used: no 
antibody (No Ab), anti-H3K9me3 (ab8898, Abcam) and anti-H3K4me3 (07-473, 
Millipore). ChIP–seq, performed as described in ref. 32, was used as a reference for 
TAM-ChIP–seq (anti-H3K9me3 (ab8898, Abcam) and anti-H3K4me3 (07-473, 
Millipore) were used).

TAM-ChIP–RT–qPCR. TAM-ChIP was performed on two biological replicates for 
each condition (H3K4me3, H3K9me3 and No Ab). For each biological replicate, 
three technical replicates were analyzed by RT–qPCR. In TAM-ChIP–RT–qPCR 
one of the two H3K4me3 biological replicates was excluded because no appreciable 
signal was detected for any condition. For each TAM-ChIP condition, 10 ng of final 
library was used as input. Water was used as a negative control. RT–qPCR analysis 
was performed using Sybr Green Master Mix (Applied Biosystems) on the Viia 
7 Real Time PCR System (Applied Biosystems). All primers used were designed 
on H3K9me3-enriched chromatin regions derived from reference ChIP–seq data 
(as previously described in ref. 32) and used at a final concentration of 400 nM. To 
determine the enrichment obtained, we normalized TAM-ChIP–RT–qPCR data to 
No Ab samples. Primers are listed below.

Primer Forward sequence Reverse sequence

BRINP2 GCGCCTTCCTTACTTCCATG AGTGGCCATCTCATTTCCCA
NTF3 AAAGGCCTTGGTCCCAGA ATTGAAGGAACGCAGCCC

CACNA1E GAGGGAGGAGAAAGCCGA TTGTCCAGACCAGCCCTT

Tn5 transposase production. Tn5 transposase was produced as previously 
described65 using pTXB1-Tn5 vector (Addgene, 60240). For hybrid transposases, 
the DNA fragment encoding human HP-1α was derived from the pET15b-HP1α 
(pHP1α-pre) vector66, kindly provided by H. Kurumizaka. According to 
the cloning strategy, two different lengths of HP-1α polypeptide (spanning 
amino acids 1–93 and 1–112) were linked to Tn5, using either a three or five 
poly-tyrosine-glycine-serine (TGS) linker, resulting in four hybrid constructs, TnH 
1–TnH 4: TnH 1, amino acids 1–93 (HP-1α)-3 × TGS-Tn5; TnH 2, amino acids 
1–93 (HP-1α)-5 × TGS-Tn5; TnH 3, amino acids 1–112 (HP-1α)-3 × TGS-Tn5; 
TnH 4, amino acids 1–112 (HP-1α)-5 × TGS-Tn5. The 1–93 or 1–112 amino acid 
spanning regions of HP-1α include 1–75 amino acids of CD followed by 18 or 37 
amino acids of natural linker, respectively. Construct amino acid sequences are 
detailed in Supplementary Data 1.

Transposon assembly. Assembly of standard and modified preannealed MEDS 
oligonucleotides, Tn5MEDS-A, Tn5MEDS-B and TnHMEDS-A was performed in 
solution following a published protocol67. For scGET-seq, standard ME-A oligo65 
was replaced by a combination of eight different sequences containing 8-nt tags 
before the 19-nt ME sequence to allow differentiation of fragments derived from 
either Tn5 or TnH tagmentation. Four sequences were used to replace standard 
Tn5ME-A (Tn5ME-A.1, Tn5ME-A.2, Tn5ME-A.7 and Tn5ME-A.8), and another 
four sequences were used to replace TnHME-A (TnHME-A.4, TnHME-A.5, 
TnHME-A.9 and TnHME-A.10). A read 1 primer binding site was reconstituted 
adding 8 nt (TCCGATCT) upstream of the Tn5/TnH tag. Modified Tn5ME-A 
sequences are reported in Supplementary Data 1.

Creation of functional transposon was performed following a previously 
published protocol65.

Bulk tagmentation reaction and ATAC-seq. Bulk tagmentation was performed 
on Caki-1 gDNA following a published protocol65. Specifically, 500 ng of gDNA 
was incubated for 7 min at 55 °C with 1 μl of functional transposon in 1× 
TAPS-PEG8000 buffer in a final 20-μl volume. As a control, a parallel reaction was 
performed on Caki-1 gDNA but using the Nextera DNA Library Prep kit according 
to the manufacturer’s protocol. Reactions were stopped by adding SDS at a final 
concentration of 0.05% and incubated for 5 min at room temperature. Then, 5 μl 
of this mixture was used as input for indexing PCR using standard Nextera N7xx 
and S5xx oligos and KAPA HiFi enzyme (Roche) using the following protocol: 
3 min at 72 °C, 30 s at 98 °C followed by 13 cycles of 45 s at 98 °C, 30 s at 55 °C 
and 30 s at 72 °C. Libraries were then purified using 1× volume of Ampure XP 

beads (Beckman Coulter) and checked for fragment distribution on a TapeStation 
(Agilent).

ATAC-seq was performed following published protocols9 with minor 
modifications. Briefly, 100,000 Caki-1 cells were pelleted and washed in 100 μl 
of cold 1× PBS, centrifuged for 10 min at 500g at 4 °C and permeabilized in 
100 μl of cold lysis buffer (10 mM TrisHCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 
0.1% (vol/vol) Igepal CA-630) then centrifuged again for 10 min at 500g at 4 °C. 
Tagmentation was performed on cell pellets, using either Tn5 or TnH, by adding 
100 μl of transposition mix (5× TAPS-PEG8000 buffer mixed with 10 μl of 1.39 μM 
functional transposon in a final volume of 100 μl). As a control, a parallel reaction 
was performed on 100,000 pelleted Caki-1 cells using the Nextera XT DNA Library 
Prep kit (Illumina) according to the manufacturer’s protocol. Reactions were 
performed at 37 °C for 30 min and stopped by adding SDS at a final concentration 
of 0.05%. After 5 min of incubation at room temperature, reactions were purified 
using a QIAquick Gel Extraction kit (Qiagen) and eluted in 15 μl of Elution 
Buffer. Five microliters of this reaction was used as input for indexing PCR as 
described before. Libraries were sequenced on Illumina platforms using a 2 × 50-bp 
sequencing protocol.

scATAC-seq and scGET-seq. scATAC-seq was performed on a Chromium 
platform (10x Genomics) using ‘Chromium Single Cell ATAC Reagent Kit’ V1 
chemistry (manual version CG000168 Rev C) and ‘Nuclei Isolation for Single 
Cell ATAC Sequencing’ (manual version CG000169 Rev B) protocols. Nuclei 
suspensions were prepared to get 10,000 nuclei as target nuclei recovery.

scGET-seq was performed as previously described, but the provided ATAC 
transposition enzyme (10x Tn5; 10x Genomics) was replaced with a sequential 
combination of Tn5 and TnH functional transposons in the transposition mix 
assembly step. Specifically, a transposition mix containing 1.5 μl of 1.39 μM Tn5 
was incubated for 30 min at 37 °C, then 1.5 μl of 1.39 μM TnH was added for a 1-h 
incubation.

When scGET-seq was performed using a 20:80 ratio of HeLa:Caki-1 cells, 
nuclei suspensions were prepared in duplicate to get 10,000 nuclei as target nuclei 
recovery for each replicate.

Final libraries were loaded on a Novaseq6000 platform (Illumina) 
to obtain 50,000 reads per nucleus with a read length of 2 × 50 bp. For 
GET-seq, the sequencing target was 100,000 reads per nucleus, and 
a custom read 1 primer was added to the standard Illumina mixture 
(5′-TCGTCGGCAGCGTCTCCGATCT-3′). Sequencing statistics for all scGET-seq 
experiments presented in the manuscript are reported in Supplementary Table 8.

scRNA-seq. scRNA-seq was performed on a Chromium platform (10x Genomics) 
using ‘Chromium Single Cell 3ʹ Reagent Kits v3’ kit manual version CG000183 
Rev C (10x Genomics). Final libraries were loaded on a Novaseq6000 platform 
(Illumina) to obtain 50,000 reads per cell.

Kdm5c knockdown experiment. Lentiviral vectors were produced by transfecting 
HEK293T cells (a kind gift from L. Naldini, San Raffaele Telethon Institute for 
Gene Therapy) with pLK0.1 plasmid containing shRNAs targeting Kdm5c (shKd
m5c, CCGGGCAGTGTAACACACGTCCATTCTCGAGAATGGACGTGTGTTA
CACTGCTTTT) or scramble (shScr)32.

A calcium chloride method was used for transfection. Specifically, a mix 
containing 30 μg of transfer vector, 12.5 μg of ∆r 8.74, 9 μg of Env vesicular 
stomatitis virus (VSV)-G, 6.25 μg of Rev and 15 μg of adenovirus (ADV) plasmid 
was prepared and filled up to 1,125 μl with 0.1× TE:deionized water (2:1). After 
30 min of incubation with rotation, 125 μl of 2.5 M CaCl2 was added to the mix 
and, after 15 min of incubation, the precipitate was formed by dropwise addition 
of 1,250 μl of 2× HBS to the mix while vortexing at full speed. Finally, 2.5 ml of 
precipitate was added drop by drop to 15-cm dishes with HEK293T cells at 50% 
confluency. After 12–14 h, the medium was replaced with 16 ml of fresh medium 
per dish supplemented with 16 μl of NAB per dish. After 30 h, the medium 
containing viral particles was collected, filtered with a 0.22-μm filter and stored at 
–80 °C in small aliquots to avoid freeze–thaw cycles.

NIH-3T3 cells were transduced using a six-well plate format. To this end, 
2 ml of shKdm5c/shScr lentiviral vector supplemented with polybrene (final 
concentration, 8 μg ml–1) was added to actively cycling (50% confluency) NIH-3T3 
cells; one well of untransduced cells was used as a negative control. After 24 h, 
transduced cells were passaged in a 10-cm dish, and puromycin selection (final 
concentration, 4 μg ml–1) was performed. Forty-eight hours after selection, half 
of the transduced cells were detached, washed twice with cold 1× PBS and tested 
for gene knockdown by RT–qPCR as described below. Following knockdown 
validation, 72 h after selection, all remaining cells were collected and subjected to 
scGET-seq as already described. Nuclei suspensions were prepared to get 10,000 
nuclei as target nuclei recovery.

Gene knockdown validation by RT–qPCR. Total RNA was isolated using Trizol 
(Invitrogen) and purified using an RNeasy mini kit (Qiagen). cDNA was generated 
using a First-Strand cDNA Synthesis ImpromII A3800 kit (Promega) with random 
primers. RT–qPCR was performed using Sybr Green Master Mix (Applied 
Biosystems) on the Viia 7 Real Time PCR System (Applied Biosystems). Ten 
nanograms of cDNA was used as input, and water was used as a negative control. 
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Amplification was performed using previously validated primers32 used at a final 
concentration of 400 nM except for primers for major ncRNA that were used at 
200 nM. Primers for minor ncRNA were taken from ref. 68 and were used at a final 
concentration of 400 nM.

Human-derived colorectal cancer organoids (PDOs). Samples from two 
individuals with liver metastatic gastrointestinal cancers were obtained following 
written informed consent, in line with protocols approved by the San Raffaele 
Hospital Institutional Review Board and following procedures in accordance 
with the Declaration of Helsinki of 1975, as revised in 2000. PDO cultures were 
established as previously reported69. Briefly, fresh tissues were minced immediately 
after surgery, conditioned in PBS/5 mM EDTA and digested for 1 h at 37 °C in a 
solution composed of 2× TrypLE Select Enzyme (Thermo Fisher) in PBS/1 mM 
EDTA with DNAse I (Merck). Release of cells was facilitated by pipetting. 
Dissociated cells were collected, suspended in 120 μl of growth factor-reduced 
Matrigel (Corning 356231, Fisher Scientific), seeded in single domes in a 24-well 
flat-bottom cell culture plate (Corning) and, after dome solidification, covered with 
1 ml of complete human organoid medium69; medium was replaced every 2–3 d. 
For scGET-seq analysis, after a 20-min incubation at 37 °C in a solution of 1× 
TrypLE Select Enzyme in PBS/1 mM EDTA, PDOs were dissociated to single cells 
by combining mechanical (pipetting) and enzymatic digestion, washing in 1× PBS 
and processing as previously described.

Human-derived colorectal cancer xenografts (PDXs). Specimen collection and 
annotation. EGFR blockade-responsive colorectal cancer and matched normal 
samples were obtained from one individual that underwent liver metastasectomy at 
the Azienda Ospedaliera Mauriziano Umberto I (Torino). The individual provided 
informed consent. Samples were procured, and the study was conducted under the 
approval of the Review Boards of the Institution.

PDX models and in vivo treatment. Tumor implantation and expansion were 
performed in 6-week-old male and female non-obese diabetic/severe combined 
immunodeficient (NOD/SCID) mice as previously described69. Once tumors 
reached an average volume of ~400 mm3, mice were randomized into the following 
four treatment arms that received either placebo or cetuximab (Merck; 20 mg 
kg–1 twice weekly, intraperitoneally): (1) untreated, (2) cetuximab for 72 h, (3) 
cetuximab for 4 weeks and (4) cetuximab for 7 weeks. To recover enough cells 
from tumors that had shrunk during cetuximab treatment, multiple xenografts 
were minced and mixed together to obtain the individual data points of treated 
arms (n = 1 in the case of untreated tumors; n = 2 for 72 h; n = 4 for 4 weeks; n = 5 
for 7 weeks). The whole experiment was performed twice to obtain independent 
biological duplicates for each experimental point. To reach the endpoint of all the 
experimental groups on the same day, treatments were started asynchronously. 
Tumor growth was monitored once weekly by caliper measurements, and 
approximate tumor volumes were calculated using the formula 4/3π × (d/2)2 × D/2, 
where d and D are the minor tumor axis and the major tumor axis, respectively. 
Operators were blinded during measurements. In vivo procedures and related 
biobanking data were managed using the Laboratory Assistant Suite (https://doi.
org/10.1007/s10916-012-9891-6). Animal procedures were approved by the Italian 
Ministry of Health (authorization 806/2016-PR).

scGET-seq on PDXA. At the end of treatments, mice were killed, and tumors were 
collected. All the tumors pertaining to each treatment arm were pooled together. 
The dissociation step was performed using the Human Tumor Dissociation kit 
(Miltenyi Biotec) with the gentleMACS Dissociator (Miltenyi Biotec) according 
to the manufacturer’s protocol. Single cells were then subjected to scGET-seq as 
already described. Nuclei suspensions were prepared to get 10,000 nuclei as target 
nuclei recovery for each replicate.

FIB reprogramming toward iPSCs and iPSC differentiation toward NPCs. 
Dermal FIBs obtained from skin biopsies of two different healthy individuals 
(A and B) were cultured in fibroblast medium and reprogrammed with Sendai 
virus technology (CytoTune-iPS Sendai Reprogramming kit, Thermo Fisher) to 
generate human iPSC clones. iPSC clones were individually picked, expanded 
and maintained in mTeSR1 on human ESC (hESC)-qualified Matrigel. Human 
iPSC-derived NPCs were generated following the standard protocol based on 
dual SMAD inhibition70. Briefly, iPSCs were differentiated to NPCs via human 
embryoid bodies. Neural induction was initiated through inhibition using the 
dual small inhibition molecules dorsomorphin, purmorphamine and SB43152. 
The small molecule CHIR99021, a GSK-3β inhibitor, was added to stimulate the 
canonical WNT signaling pathway. The study was approved by Comitato Etico 
Ospedale San Raffaele (BANCA-INSPE 09/03/2017). Human FIBs, iPSCs and 
NPCs derived from individuals A and B were collected, counted and subjected 
to GET-seq and scRNA-seq, as already described, starting from the same cell 
suspension. Target recovery was 5,000 cells for scRNA-seq and 5,000 nuclei for 
scGET-seq.

Bioinformatics analysis. Data preprocessing. Illumina sequencing data for 
bulk sequencing were demultiplexed using bcl2fastq using default parameters. 
Sequencing data for single-cell experiments were demultiplexed using 

cellranger-atac (v1.0.1). Identification of cell barcodes was performed using 
umitools (v1.0.1)71 using R2 as input.

Read tags for GET-seq and scGET-seq experiments, where TnH and Tn5 data 
are mixed, were processed with TagDust (v2.33)72, specifying transposase-specific 
barcodes as first block in the hidden Markov model (HMM) model. The data 
preprocessing pipeline is available at https://github.com/leomorelli/scGET.

Reads for ChIP–seq, GET-seq and scGET-seq experiments were aligned to the 
reference genome (hg38 or mm10) using BWA-MEM v0.7.12 (ref. 73).

Analysis of bulk sequencing data. Aligned reads were deduplicated using 
SAMBLASTER74. Genome bigwig tracks were generated using bamCoverage from 
the deepTools suite75 with bins per million mapped reads (BPM) normalization. 
H3K4me3-enriched regions were identified using MACS v2.2.7 (ref. 76), and 
H3K9me3-enriched regions were identified using SICER v2 (ref. 77) using default 
parameters.

Definition of epigenome reference sets. We segmented the genome according to 
DHSs, as previously described78. Briefly, we downloaded the index of DHSs for 
human79 and mouse genomes77; intervals closer than 500 bp were merged using 
bedtools80 to create the interval set for accessible chromatin (named ‘DHS’). We 
then took the complement of the set to create the interval set for compacted 
chromatin (named ‘complement’).

Analysis of scGET-seq data. Lists of accepted cellular barcodes were assigned to 
reads inside aligned BAM files using bc2rg.py script from scatACC (https://github.
com/dawe/scatACC). Duplicated reads were then identified at the cell level using 
cbdedup.py script from the same repository. For each scGET-seq experiment, 
we generated four count matrices, Tn5-dhs, Tn5-complement, Tnh-dhs and 
TnH-complement, profiling Tn5 and TnH over accessible and compacted 
chromatin, respectively. Count matrices were generated using peak_count.py 
script from the scatACC repository. Each count matrix was processed using scanpy 
v1.4.6 or v1.6.0 (ref. 81). After an initial filtering on shared regions and number 
of detected regions per cell, matrices were normalized and log transformed. The 
number of regions was used as a covariate for linear regression, and data were 
then scaled with a maximum value set to 10. Neighborhood was evaluated using 
batch-balanced KNN82, and cell groups were identified with the Leiden algorithm83 
for cell lines or schist84, choosing the hierarchy level that maximizes modularity. 
To extract a unique representation of four datasets, we applied graph fusion using 
scikit-fusion85. We first extracted a 20-component UMAP reduction of each view 
and built a relation graph where all views are connected to a 20-component latent 
space. Matrix factorization was run with 1,000 iterations five times. The resulting 
latent space was then added in each scanpy object as the basis for neighborhood 
evaluation and cell clustering.

Library saturation estimates. To estimate the library complexity, we first 
downsampled ten datasets (four depicted in Figs. 2a and 6, randomly chosen) at 
different proportions (0.1×, 0.2×, 0.5×) and calculated the number of genomic 
bins (5 kb) that could be found in each dataset. For each dataset, we fitted the shape 
parameter s of a lower incomplete gamma function. We then built a linear model 
fitting the number of cells and the number of duplicates to predict s (Extended 
Data Fig. 4c). We obtained the model s = 0.815 × Ncells + 0.406 × (1–d) + 0.2316, 
where Ncells is the number of cells divided by 1,000, and d is the fraction of 
duplicated reads.

Analysis of HeLa and Caki-1 cell identity. To identify cell identity in Caki-1/
HeLa mixtures, we downloaded publicly available bulk ATAC-seq data for HeLa 
cells (GSE106145)86 and preprocessed as described above. We then generated 
a count matrix for HeLa cells and our bulk ATAC-seq for Caki-1 cells over the 
DHS regions using bedtools. The resulting matrix was analyzed in edgeR87 using 
relative log expression (RLE) normalization and contrasting HeLa versus Caki-1 
cells by a Fisher’s exact test. We selected HeLa-specific regions by filtering for a 
false discovery rate (FDR) value of <1 × 10–3, log counts per million reads mapped 
(CPM) of >3 and log fold change of >0 (that is, regions enriched in HeLa cells 
with detectable read counts), and we took the top 200 regions that were present 
in scGET-seq data. We used this list to create a HeLa score using the score_genes 
function implemented in scanpy.

Cell cycle analysis. Identification of cell cycle phase using replication data was 
performed as follows. First, we identified high-coverage and low-coverage cells in 
each experiment by analyzing TnH-complement data. We then identified the top 
500 Tn5–DHS regions characterizing each cluster.

Two-stage Repli-seq data for NIH-3T3 cells were downloaded from the 
4DNucleome project (https://data.4dnucleome.org/experiment-set-replicates/4DN
ES7ZVDD5G/), replicated data were averaged and the log2 ratio between early stage 
(E) and late stage (L) was calculated. Entries in the Tn5–DHS list were assigned the 
average log2 (E/L) value over its interval.

Lamin B1 DamID data for NIH-3T3 cells were also downloaded from 
University of California Santa Cruz genome browser tables, converted to bigwig 
format and lifted over mm10 assembly coordinates using Crossmap88. The average 
value of lamin B1 data over Tn5–DHS regions was assigned as described above.
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Differences in distribution of log2 (E/L) and lamin B1 values were evaluated by 
Mann-Whitney U-test.

Analysis of copy number alterations. Copy number alterations were derived from 
TnH data quantified over the entire genome, binned at a 5-kb resolution. Counts 
were extracted using peak_count.py script from the scatACC repository. Data 
were then processed by collapsing values into larger bins at different resolutions 
(10 Mb, 1 Mb and 500 kb). The value of each bin is divided by the average per cell 
read count. We applied linear regression of per bin GC content and mappability89 
and finally expressed values as log2 of the scaled residuals. Cell clustering was 
performed using schist applied on the KNN graph built with bbknn and using 
correlation as a distance metric. The number of clusters is defined by the highest 
level of the hierarchy that splits more than one group. Evaluation of the posterior 
distribution of number of groups is performed by equilibration of a Markov Chain 
Monte Carlo model with at most 1,000,000 iterations.

Classification of CNVs in Caki-1 and HeLa cells. We created a ground truth dataset 
by calling copy number alterations in Caki-1 and HeLa cells with Control-FREEC89 
on WGS data. We binned the resulting segments according to the desired 
resolution in single-cell experiments (10 Mb, 1 Mb and 500 kb), retaining three 
classes (loss, gain and normal).

We subsampled scATAC-seq cells and scGET-seq cells to match cell numbers 
and coverage distributions to avoid biases due to different data sizes. We split 
log2 ratio matrices into a training and a test set in a 70:30 proportion. We trained 
a logistic regression classifier and an SVM with the one-versus-rest strategy and 
increased the number of iterations to ensure convergence. We recorded accuracy 
and F1 score on the test sets. This process was applied on each resolution, cell type 
and platform.

Bulk analysis of organoid whole-exome sequencing data. Reads were aligned to the 
hg38 reference genome using BWA, and reads were then processed using BWA. 
Alignments were processed using GATK MarkDuplicates and base quality score 
recalibration89. Somatic mutations and copy number segments were identified with 
Sequenza90 with default parameters. Evaluation of CNVs was performed using 
CNAqc91, and clonal deconvolution was performed using MOBSTER and BMix92 
with default parameters.

Analysis of mutations. Reads for Tn5 and TnH data were separated into individual 
BAM files using separate_bam.py script from the scatACC repository. Known 
somatic mutations were genotyped using freebayes v.1.3.2 (ref. 93) (parameters: -@ 
exome_somatic.vcf.gz -C 2 -F 0.01). Only variants with a depth of >1 were then 
considered for the analysis.

Variant calling without priors was performed using freebayes using the same 
thresholds. Variant call format (VCF) files were annotated using snpEff v4.3p94 
using the GRCh38.86 annotation model. Known cancer variants were annotated 
using COSMIC catalog95. Variants were then filtered for depth >10 and quality >5 
if unknown and quality >1 if profiled in COSMIC.

Chromatin Velocity. Chromatin Velocity was calculated using scvelo96. Normalized 
count matrices over DHS regions for Tn5 and TnH were first filtered to include 
regions common to both. Then a proper object was created injecting Tn5 and TnH 
data in the unspliced and spliced layers, respectively. Moments were calculated on 
the KNN graph previously estimated. Dynamical modeling was then applied, and 
final velocity was calculated with regularization by latent time. Regions having a 
likelihood value higher than the 95th percentile were considered as marker regions.

Analysis of scRNA-seq data. Reads were demultiplexed using Cell Ranger (v4.0.0). 
Identification of valid cellular barcodes and unique molecular identifiers (UMIs) 
was performed using umitools with default parameters for 10x v3 chemistry. 
Reads were aligned to the hg38 reference genome using STARsolo (v2.7.7a)97. 
Quantification of spliced and unspliced reads on genes was performed by 
STARsolo itself on GENCODE v36 (ref. 98). Count matrices were imported into 
scanpy, and doublet rate was estimated using scrublet99. The count matrix was 
filtered (min_genes = 200, min_cells = 5, pct_mito < 20) before normalization 
and log transformation. A KNN graph was built using bbknn. RNA velocity was 
estimated using scvelo dynamical modeling with latent time regularization.

TBA analysis. For each DHS region selected for likelihood, we extracted the 500-bp 
sequence flanking summits there included, as annotated in the DHS index. We 
downloaded the HOCOMOCO v11 list of PWMs100 and calculated the TBA as 
defined in ref. 101 using tba_nu.py script from the scatACC repository. TBA values for 
multiple summits within a DHS region were summed. Final values were divided by 
the length of the corresponding DHS region. To obtain a cell-specific TBA value, the 
region-by-TBA matrix was multiplied by the cell-by-region velocity matrix.

PLS analysis was performed using the PLSCanonical function from the Python 
sklearn.cross_decomposition library using cell groups as targets for the matrix 
transformation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Fastq files and raw count matrices have been deposited to the Array Express 
platform (https://www.ebi.ac.uk/arrayexpress/) with the following IDs: 
E-MTAB-9648, E-MTAB-10218, E-MTAB-2020, E-MTAB-10219, E-MTAB-9650, 
E-MTAB-9651 and E-MTAB-9659. Source data are provided with this paper.

Code availability
Code necessary to preprocess scGET-seq data is available at https://github.
com/leomorelli/scGET (ref. 102) and https://github.com/dawe/scatACC (ref. 103). 
Illustrative code snippets for postprocessing are reported in Supplementary Data 2.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Tn5 transposase is able to tagment compacted chromatin featuring H3K9me3. a, General scheme of TAM-ChIP technique 
(created with BioRender.com). A primary antibody (ChIP-validated antibody, dark grey) binds to a specific histone modification (light grey) over the 
genome (blue-red). A secondary antibody (TAM-ChIP conjugate, blue) is linked to the Tn5 transposon, which is made of Tn5 transposase (yellow) and 
the respective barcoded adapters (green). Upon the binding of the secondary antibody to the primary antibody, the linked Tn5 transposase targets and 
cuts the genomic regions flanking the histone modification, adding the barcoded adapters. TAM-ChIP was performed on two biological replicates for each 
condition (H3K4me3, H3K9me3 and NoAb). b, H3K4me3 (green) and H3K9me3 (red) enrichment profiles obtained either by ChIP-seq or TAM-ChIP-seq, 
compared with Input ChIP control (violet). c, Enrichment profile of heterochromatic genes FAM5B, NTF3, CACNA1E obtained from TAM-ChIP libraries 
assessed by Real Time-qPCR confirms Tn5 is able to target heterochromatic loci when redirected by H3K9me3 antibody. For each biological replicate three 
technical replicates were analyzed by Real-Time qPCR; one of the two H3K4me3 biological replicate was excluded because no appreciable signal was 
detected for any condition. Whiskers represent standard deviations (n = 3 technical replicates). Data shown in b and c refer to experiments performed on 
Caki-1 cell line.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Hybrid CD (HP1α)-Tn5 targets H3K9me3 chromatin regions. a, Two different lengths of HP1α polypeptide (spanning amino acids 
1-93 and 1-112) were linked to Tn5, using either a 3 or 5 poly-tyrosine–glycine–serine (TGS) linker, resulting in four hybrid construct, TnH#1-4. TnH#1 made 
of 1-93aa (HP1α) - 3x(TGS) - Tn5; TnH#2 made of 1-93aa (HP1α) - 5x(TGS) - Tn5; TnH#3 made of 1-112aa (HP1α) - 3x(TGS) - Tn5; TnH#4 made of 1-112aa 
(HP1α) - 5x(TGS) - Tn5. The 1-93 or 1-112aa spanning regions of HP1α include 1-75aa of CD followed by 18 or 37aa of natural linker, respectively (Created 
with BioRender.com). b-c, Tagmentation profiles relative to the four hybrid constructs (TnH#1-4) showing no difference in tagmentation efficiency relative 
to the native Tn5 enzyme (Nextera and Tn5 in-house produced) when targeting either genomic DNA, panel b, or native chromatin on permeabilized nuclei, 
panel c. d, Enrichment profiles relative to ATAC-seq performed with the four hybrid constructs (TnH#1-4, red) compared with native Tn5 enzyme (Nextera 
and Tn5 in-house produced) and with H3K4me3 and H3K9me3 ChIP-seq signals (green). e, Distribution of the enrichment of four TnH hybrid constructs 
(TnH#1-4) relative to genomic background in regions enriched for H3K4me3 (orange) or H3K9me3 (blue) expressed as log2(ratio) of the signal over the 
genomic Input. Enrichment over the same regions for native Tn5 enzyme (Nextera and Tn5 in-house produced), H3K4me3 and H3K9me3 ChIP-seq are 
reported as reference. Ec: global enrichment over H3K9me3-marked regions; Eo: global enrichment over H3K4me3-marked regions; Mc: modal enrichment 
over H3K9me3-marked regions; Mo: modal enrichment over H3K4me3-marked regions. Data shown in b, c and d refer to experiments performed on Caki-1 
cell line.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Optimization of ATAC-seq protocol introducing a combination of Tn5 and TnH transposases. a, Effect of altering Tn5 (green) to 
TnH (red) ratio on tagmentation profiles when adding both enzymes simultaneously at the beginning of the 60 minutes of the transposition reaction. b, 
Sequential addition of the same quantity of Tn5 and then TnH enzyme after 30 minutes of the transposition reaction results in a balanced distribution of 
enrichment signals between the two enzymes. Experiments performed on Caki-1 cell line.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Characteristic of scGET-seq data. a Abundance of unique cell barcodes retrieved by scATAC-seq performed on Caki-1 cells using 
the provided ATAC transposition enzyme (10X Tn5; 10X Genomics) (blue) compared to cell barcodes countable by TnH (orange) or Tn5 (green) alone. 
scGET-seq performance (Tn5 + TnH) is represented in red. The curves are largely overlapping, indicating no evident bias in single cell identification; b 
Distribution of per-cell normalized coverage over fixed-size genomic bins (5 kb) is reported for 10X Tn5 (blue) and for signal obtained by TnH (orange) and 
Tn5 (green). While Tn5 is comparable to 10X Tn5, TnH returns higher and less overdispersed per-bin coverages. White dot in boxplots reprents the median, 
boxes span between the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range. n = 3363, 1281 and 1537 cells in one experiment; c 
Saturation analysis for selected libraries. Dotted lines show the fitted incomplete Gamma functions on subsampled data; red solid lines show subsampling 
data from the same libraries; d Tn5 (green) and TnH (red) enrichment profiles obtained from scGET-seq (pseudo-bulk) or from ATAC-seq performed by 
using the two enzymes separately, compared with H3K4me3 (green) and H3K9me3 (red) ChIP-seq data. Data shown refer to experiments performed on 
Caki-1 cells.
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Extended Data Fig. 5 | Copy Number analysis at multiple resolutions. a, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) 
(left panel) or TnH scGET-seq (right panel) at 500 kb. b, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) (left panel) or TnH 
scGET-seq (right panel) at 1 Mb. c, Segmentation profiles in individual cells profiled by 10X Tn5 (scATAC-seq) (left panel) or TnH scGET-seq (right panel) 
at 10 Mb. On top of each heatmap the genome-wide coverage of bulk sequencing of corresponding cell lines is represented. Centromeric regions and gaps 
(in white) have been excluded from the analysis.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of Patient Derived Organoids. a, evaluation of clonal structure of two PDO (CRC6 and CRC17) by exome 
sequencing; the histogram show the distribution of the cancer cell fraction estimated from the analysis of somatic mutations; in both organoids we 
observe a monoclonal structure b, 5X (left panel) and 10X (right panel) magnification contrast phase images of PDO #CRC17 obtained from a liver 
metastasis of a CRC patient (n>5); c absolute copy number of CRC17 and CRC6 as revealed by whole exome sequencing; data in panel c are equivalent to 
barplots over heatmaps in Fig. 3a.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scGET-seq analysis on PDX samples. a, UMAP embedding of individual cells as in Fig. 3, colored by the time PDX were harvested. 
b, Segmentation profiles in individual cells profiled by scGET-seq at 1 Mb resolution expressed as log2(ratio) over the median signal. Cells are clustered 
according to genetic clones. Red: positive values; Blue: negative values. Centromeric regions (white) have been excluded from the analysis because they 
correspond to low mapping and not fully characterized regions.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | scGET-seq profiling of NIH-3T3 cells knocked-down for Kdm5c. a, Distribution of early-to-late ratio of 2-stage Repli-seq data 
for NIH-3T3 cells. Violin plots represent the value of log2(E/L) values over DHS regions which are differential in the high-vs-low coverage cells in Fig. 4a 
(Mann-Whitney U = 36169.5, p = 1.403e-84). White dot in boxplots represents the median, boxes span between the 25th and 75th percentiles, whiskers 
extend 1.5 times the interquartile range. n = 35438 regions. b, Distribution of lamin-B1 DamID scores for NIH-3T3 cells. Violin plots represent the value of 
DamID scores over DHS regions which are differential in the high-vs-low coverage cells in Fig. 4a (Mann-Whitney U = 723.0, p = 4.621e-6). White dot in 
boxplots represents the median, boxes span between the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range. n = 35438 regions. 
c, UMAP embedding of individual cells coloured by cell groups, identified by Leiden algorithm with resolution parameter set to 0.2. d, Results of the linear 
model calculating the group-wise differences between TnH and Tn5 enrichment. For each group we reported the coefficient of the model, the p-value and 
the Benjamini-Hochberg corrected p-value. Values are reported for the two genomic regions including the Major primers (see text). Barplot indicates the 
proportion of shScr-treated for each cell group.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | scGET-seq profiling of a developmental model of iPSC. a, UMAP embedding of individual cells colored by the probability of being 
included in a trajectory branch estimated by Palantir. Three major branches have been identified, roughly corresponding to the three cell types profiled in 
this study. b, Schematic representation of the phase portraits underlying Chromatin Velocity. In RNA-velocity, the time derivative of the unspliced/spliced 
RNA is used to estimate synthesis or degradation of RNA; in Chromatin Velocity, the same procedure is applied on Tn5/TnH data to estimate chromatin 
relaxation or compaction. d, UMAP embedding of individual cells colored by cell clusters. e, Heatmap shows average expression profiles of TF with the top 
10 most negative on PLS2 during the early brain development. Darker color indicates higher expression. w.p.c.: weeks post conception.
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